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The k-nearest-neighbor rule is a popular classification technique, and rough set theory is an
effective mathematical tool to deal with the uncertainty of data. Rough set models based
on k-nearest-neighbor relations have a strong ability to approximate decisions, but the cal-
culation is very time-consuming. In this paper, we model the overlap degree of objects
from different categories in advance to accelerate the attribute reduction and improve
the classification performance of the selected attributes. Firstly, we define the coincidence
degree (CD) and distance (DIS) of objects from different categories to measure the coverage
and distance of between-class objects. Secondly, we combine CD and DIS to define the over-
lap degree (OD) to pre-sort attributes, then use k-nearest-neighbor rough sets to filter
inconsistent and redundant attributes. The pre-sort operation based on OD can greatly
reduce the number of searches for attributes and ensure that the attributes with high sep-
arability should be selected first. Furthermore, we design a fast reduction algorithm
(OD&KNN) to obtain a reduct with the ability to approximate decisions as well as the orig-
inal attributes but with lower OD. Comparing experimental results and time complexity of
OD&KNN with state-of-the-art algorithms, OD&KNN is more efficient for high-dimensional
data while ensuring classification accuracy.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

In the early 1980s, Pawlak proposed rough set theory (RST) [29], from the perspective of information granules to approx-
imate concepts, which has been widely used to measure the uncertainty and incompleteness of information systems. In
order to discover the knowledge of information systems with fuzzy attributes and concepts, Dubois and Prade combined
fuzzy sets [43] and rough sets (RS) to propose rough fuzzy sets (RFS) and fuzzy rough sets (FRS) [11,12]. The RFS and FRS
models can only deal with fuzzy systems or fuzzy concepts, but they can not characterize the degree of inclusion between
information granules and concepts. To describe the degree of inclusion, Ziarko introduced the precision parameter b to RS,
then proposed the variable precision rough sets (VPRS)[45]. To solve the problem of ordering attribute values in the evalu-
ation of bankruptcy risk, Greco et al. presented dominance relations to assess the level of risk, and established the
dominance-based rough sets for bankruptcy evaluation [14]. With increasing number of data types, rough sets based on var-
ious relations have been studied in the literatures, such as neighborhood rough sets (NRS) [19,41], k-nearest neighborhood
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rough sets [18,37] and fuzzy neighborhood rough sets [35]. The classical rough set model and its extended models are
applied to attribute reduction [23,33,34], rule extraction [15], gene data expression [31,32] and decision analysis [16,17,26].

Attribute reduction based on RS aims to find the smallest attribute subset that can keep the positive region unchanged in
most cases. Different relations produce different information granules, and different information granules induce different
positive regions. Therefore, for an information system, we can get different reducts by using different relations. Reducts
are not unique for a given information system, so the reducts obtained by different search strategies are different. To get
a reduct with high classification accuracy, researchers have studied attribute reduction based on neighborhood rough sets
[1,24], fuzzy rough sets [5,25,27], dominance-based rough sets [30] and others [6,22,42].

NRS is a rough set model for dealing with information systems with real-valued attributes. Hu et al. [19] defined the
neighborhood relation of heterogeneous features, then applied the relation to define a measure for evaluating the impor-
tance of feature subsets. In addition, they used a forward selection strategy to find an optimal feature subset. After that,
Hu et al. [18] proposed k-nearest-neighbor relations and d-neighborhood relations to perform attribute reduction. To find
the upper and lower approximations for dynamic data in neighborhood systems, Zhang et al. [44] proposed four methods
of updating approximations to efficiently model the knowledge of dynamic neighborhood systems. Chen et al. [7] combined
dominance and neighborhood relations to define a novel rough set model, and designed a parallel reduction algorithm by
using the neighborhood dominance relation matrix. In addition, Chen et al. [8] divided the boundary region into lower
and upper boundary regions to define the importance of attributes in neighborhood systems, and designed a reduction algo-
rithm based on particle swarm optimization. Wang et al. [35] studied attribute reduction based on fuzzy neighborhood
rough sets in fuzzy decision systems. Then they defined neighborhood discrimination index to reduce running time of attri-
bute reduction [36] and used neighborhood self-information to improve the classification accuracy of reducts [38]. Other
attribute reduction methods based on neighborhood can be found in [20,21,28,39].

The above series of neighborhood rough sets based on neighborhood information granules have the following disadvan-
tage. For information systems with different distribution densities for different attributes (even when rescaled), the neigh-
borhood parameter that controls the size of information granules should be different for the low-density sample distribution
region and the high-density sample distribution region. To further improve the effectiveness of attribute reduction methods
based on neighborhood information granules, researchers have proposed various improved models. Hu et al. [18] used the k-
nearest-neighbor relation to granulate information systems with mixed attributes, and designed a forward attribute reduc-
tion based on variable precision k-nearest-neighbor algorithm (FarVPKNN). They found that the classification performance of
the reduct obtained by the k-nearest-neighbor relation is better than that of by the d-neighborhood relation in most cases.
Wang et al. [37] combined unit neighborhood information granules and k-nearest-neighbor information granules to define k-
nearest neighborhood information granules, and used the defined granules to design the k-nearest neighborhood algorithm
(NNRS) for attribute reduction.

Both FarVPKNN and NNRS need to repeatedly sort samples in the reduction process of continuously selecting the rela-
tively important attributes, so the time complexity is very high, and the greedy search strategies (sequentially forward selec-
tion and sequentially backward elimination [20]) are also very inefficient. Meanwhile, in the aforementioned attribute
reduction methods, the attribute evaluation functions mainly utilize the consistency of conditional attributes and decision
attributes in information granules, and do not consider the separability of decision information granules for different con-
ditional attributes. However, the separability of selected attributes is closely related to their classification performance in
classification tasks. To solve the above problems, we will improve the k-nearest-neighbor attribute reduction rule from
the search strategy and the selection of high-quality attributes in approximate decisions and separability. In this work,
we use the coincidence degree (CD) and the distance (DIS) of objects from different categories to define the overlap degree
(OD) of objects from different categories for each of the attributes, and employ the overlap degree to pre-sort attributes.
Starting with the attribute with the highest OD, we use the dependency of k-nearest-neighbor rough sets to remove redun-
dant attributes one by one. Finally, we design an algorithm (OD&KNN) to perform attribute reduction based on OD and k-
nearest-neighbor rough sets. Compared with several existing attribute reduction algorithms, OD&KNN has higher computa-
tional efficiency in terms of the dimensionality of the data. Experimental results show that OD&KNN is effective and efficient.

The main contributions of this paper are as follows: 1) We define a measure to evaluate the separability of attributes with
respect to decisions, then combine the dependency degree to propose an attribute selection approach to capture attributes
with both high separability and strong approximation ability. 2) We design fast attribute reduction algorithms for low
dimensional data and high-dimensional data based on pre-sorted attribute sets by using OD, respectively. From Table 6,
we know that OD&KNN is computationally more efficient in terms of the dimensionality of the data. 3) We develop an effi-
cient attribute search strategy under the constraints of multi-metric, which provides a new way for a fast attribute reduction
of complex data.

The paper is organized as follows. In Section 2, we review NRS and point out its weaknesses. In Section 3, the k-nearest-
neighbor rough set model is introduced and its advantages are analyzed. In Section 4, we define some measures to evaluate
the overlap degree of objects from different categories for single attribute, and combine the proposed measures and k-
nearest-neighbor rough sets to design an attribute reduction algorithm (OD&KNN). In Section 5, we employ public datasets
to verify effectiveness and efficiency of OD&KNN. Finally, we summarize this paper in Section 6.
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2. Preliminaries

In this section, we briefly review NRS; more detailed descriptions can be found in [19,41]. Meanwhile, we analyze the
weakness of NRS in terms of concept description.

2.1. Neighborhood rough sets

Let S ¼ U;Að Þ be an information system, where U ¼ x1; x2; � � � ; xnf g is a nonempty and finite object set which is called the
universe. A ¼ a1; a2; � � � ; amf g is an attribute set, to characterize the objects of the universe. In S ¼ U;Að Þ, if A ¼ C [ D, where C
is a conditional attribute set and D is a decision attribute set, then S is a decision information system which is usually
denoted as S ¼ U;C;Dð Þ. Let the decision partition U=D be D1;D2; � � � ;Drf g.

In a decision information system S ¼ U;C;Dð Þ , for any B#C and a given neighborhood threshold d, the dependency
degree of D w.r.t. B in S is
cdB Dð Þ ¼ jPOS
d
B Dð Þj
jUj ;
where POSdB Dð Þ ¼ [r
i¼1

Rd
B Dið Þ is the decision positive region of D w.r.t. B. Rd

B Dið Þ ¼ xjdB xð Þ \ Di –£; x 2 Uf g and

Rd
B Dið Þ ¼ xjdB xð Þ#Di; x 2 Uf g are upper and lower approximations of Di w.r.t. B, respectively, where dB xð Þ ¼ yjdB x; yð Þ 6 df g

is the d-neighborhood of x w.r.t. B and dB is a distance function.
cdB Dð Þ is the proportion of consistent objects in U, which can be used to measure the approximation ability of Bw.r.t. D in S.

The larger the cdB Dð Þ is, the stronger the approximation ability of B is. There are two factors that will affect cdB Dð Þ for a given
decision information system. One is B which characterizes objects of universe. The more coordinated B w.r.t. D is, the greater
the cdB Dð Þ is. That is to say, when the consistency of the conditional attribute subset with respect to the decision attribute set
is larger, the attribute subset has stronger approximation ability. The other is the neighborhood threshold d. The size of
neighborhood information granules can be controlled by adjusting d, and then the ability of attribute subset B to approxi-
mate decision D can be improved.

2.2. Weakness of neighborhood rough sets

How to determine neighborhood threshold d is a key problem of neighborhood rough sets. First of all, for data with dif-
ferent distribution densities for different attributes (even when rescaled), neighborhood parameter d should be set with dif-
ferent values according to different distribution densities. The weakness of NRS is that the same neighborhood threshold is
used to granulate data with different distribution densities for different attributes, which may lead to strong approximation
ability but weak classification ability. Furthermore it is difficult to get a suitable threshold for different attribute subsets.
Moreover, the selection of neighborhood parameters will directly affect the approximation ability of the selected attribute
subset to the decision. If d is too large, the size of neighborhood information granule will be too large, which will reduce the
ability of B to approximate D. If d is too small, the size of neighborhood information granule will be too small, which will
improve the ability of B to approximate D, but it will lead to overfitting. Therefore, it is more difficult to choose d for data
with different distribution densities for different attributes. In practice, many data have different dimensions for different
attributes, and the density distribution of data is also different. For example, the dimension of neighborhood threshold of
information granules formed by cities within 100 km around London is measured in kilometer. The dimension of neighbor-
hood threshold of information granules formed by hotels within 500 m around Oxford University is measured in meter. We
can eliminate the dimension of data by normalization, but the difference of distribution density of data for different attri-
butes still exists. It is unreasonable to use a neighborhood threshold to calculate the neighborhood information granules
of an object for each attribute. Next, we use an example to illustrate the influence of neighborhood parameters on the
approximation ability of attribute subsets.

Example 2.1 A given decision information system S ¼ U;C;Dð Þ with 12 objects, 4 conditional attributes and 1 decision
attribute is shown in Table 1a. From Table 1a, we know that U=D ¼ D1;D2f g, where D1 ¼ x1; x2; � � � ; x6f g and
D2 ¼ x7; x8; � � � ; x12f g. The shortest distance between two objects with different decisions is 0.053852 for attribute subset
B1 ¼ a1; a2f g. The shortest distance between two objects with different decisions is 0.20881 for attribute subset
B2 ¼ a3; a4f g. From Figs. 1(a), (b) and (c), we can see that the best threshold value is 0.053852 for B1 ¼ a1; a2f g. When d is
less than 0.053852, B1 has the strongest ability to approximate D. However, when the size of information granules is too
small, it will lead to overfitting. When d is more than 0.053852, the ability of B1 to approximate D will decrease. From Figs. 1
(d), (e) and (f), we can see that the best threshold value is 0.20881 for B2 ¼ a3; a4f g. When d is less than 0.20881, B2 has the
strongest ability to approximate D. If the size of information granules is too small, it will lead to overfitting. When d is more
than 0.20881, the ability of B2 to approximate D will decrease.

We take d equal to 0.05, 0.08 and 0.22 to calculate the dependency degree for B1 ¼ a1; a2f g and B2 ¼ a3; a4f g, respectively.
When d ¼ 0:05; c0:05B1

Dð Þ ¼ 1 and c0:05B2
Dð Þ ¼ 1. When d ¼ 0:08; c0:08B1

Dð Þ ¼ 0:3333 and c0:08B2
Dð Þ ¼ 1. When d ¼ 0:22; c0:22B1

Dð Þ ¼ 0

and c0:22B2
Dð Þ ¼ 0:6667. From the above results, we can see that the ability of B1 to approximate D is not better than that
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Table 1
A decision information system.

U C D

a1 a2 a3 a4 d

x1 0.06 0.08 0.11 0.91 1
x2 0.03 0.10 0.32 0.92 1
x3 0.03 0.14 0.31 0.43 1
x4 0.06 0.11 0.45 0.41 1
x5 0.05 0.13 0.67 0.68 1
x6 0.09 0.14 0.81 0.12 1
x7 0.08 0.03 0.23 0.69 2
x8 0.12 0.07 0.39 0.21 2
x9 0.10 0.03 0.61 0.89 2
x10 0.14 0.09 0.78 0.93 2
x11 0.13 0.07 0.74 0.41 2
x12 0.14 0.03 0.91 0.43 2
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Fig. 1. Size of granules for different d in a1; a2f g and a3; a4f g.
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of B2 no matter what value d takes. Fig. 2 is the classification results using the KNN algorithm and RBF-SVM algorithm, where
k ¼ 3 in KNN, C ¼ 1 and d ¼ 1 in RBF-SVM. From Fig. 2, the separability of B1 is significantly better than that of B2. As can be
seen from Figs. 2 (a) and (b), all objects can be classified correctly using KNN and SVM algorithms without overfitting for B1.
From Figs. 2(c) and (d), there are some objects that have been misclassified using KNN and SVM algorithms for B2. Moreover,
there are overfitting for B2. From the above discussion, we can see that the ability of B2 to approximate D is better than that of
B1 in neighborhood rough sets, but the separability of objects for B1 is better than that of B2.

At present, many research results have shown that the selection of attributes has certain advantages in classification
accuracy based on the dependency degree of conditional attribute subsets with respect to decisions. From the results of
the above cases, there is no positive correlation between the approximation ability of attribute subsets and the separability
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Fig. 2. Classification results for a1; a2f g and a3; a4f g.

M. Hu, Eric C.C. Tsang, Y. Guo et al. Information Sciences 584 (2022) 301–324
of attribute subsets for decisions. However, the separability of attributes can well describe the classification performance of
the attributes for decisions. Therefore, we consider the separability and approximation ability of attributes for decisions
simultaneously to ensure the performance of the selected attributes in the classification task. In addition, we will design
an efficient search strategy to achieve fast reduction.

3. K-Nearest-neighbor rough sets

In this section, we systematically study k-nearest-neighbor rough set model and analyze its important properties. Mean-
while, we use the corresponding measures to evaluate the importance of attribute subsets.

Definition 1. Let S ¼ U;C;Dð Þ be a decision information system. 8x 2 U;B#C, the k-nearest-neighbor class topkB xð Þ of object x
for attribute subset B is
topk
B xð Þ ¼ \

a2B
topk

a xð Þ; ð1Þ
where topk
a xð Þ denotes the first k objects (including x itself) that are closest to object x for attribute a in universe U, and k is a

given positive integer.
The k-nearest-neighbor class is also called the k-nearest-neighbor information granule. The size of k-nearest-neighbor

information granules is controlled by parameter k. All the k-nearest-neighbor information granules in S ¼ U;C;Dð Þ form a
cover on U. x 2 topk

B xð Þ. When k ¼ 1; topk
B xð Þ ¼ xf g, the size of information granules is the smallest. When

k ¼ jUj; topk
B xð Þ ¼ U, the size of information granules is the largest. The k-nearest-neighbor relation Rk

B is
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Rk
B ¼ x; yð Þjy 2 topk

B xð Þ; x 2 U; y 2 U
� �

: ð2Þ
Therefore, relation matrix Rk
B is not symmetric.

Property 1. Given a decision information system S ¼ U;C;Dð Þ;B1 #C and B2 #C; k is a positive integer. Rk
B is a k-nearest-

neighbor relation, we have
Rk
B1[B2 ¼ Rk

B1
\ Rk

B2
:

Proof 1. According to Definition 1, there are topk
B1[B2 xð Þ ¼ \

a2B1[B2
topk

a xð Þ ¼ topk
B1

xð Þ \ topk
B2

xð Þ, so Rk
B1[B2 ¼ Rk

B1
\ Rk

B2
.

According to Property 1, we can independently calculate the k-nearest-neighbor relation of each attribute on U, then the
k-nearest-neighbor relation of any attribute subset can be obtained by the intersection. This property is helpful to develop a
heuristic search algorithm for attribute reduction, which can reduce repeated relation calculation. The previous d-
neighborhood relations usually do not satisfy the intersection operation between the relation for the attribute subset and
the relations of corresponding single attribute. In attribute reduction based on d-neighborhood relations, it is necessary to
repeatedly calculate the distance of samples for many single attributes when calculating the relation of the attribute subset
in each loop. This will lead to a lot of repeated calculations and is also time-consuming. However, in the calculation of the k-
nearest-neighbor relation, the relations of all single attributes need to be calculated only one time.

Definition 2. Let S ¼ U;C;Dð Þ be a decision information system. 8X#U, the upper and lower approximations of X for B in S
are
Rk
B Xð Þ ¼ xjtopk

B xð Þ \ X – £; x 2 U
� �

;

Rk
B Xð Þ ¼ xjtopk

B xð Þ#X; x 2 U
� �

:
ð3Þ
If Rk
B Xð Þ ¼ Rk

B Xð Þ, then X w.r.t. k-nearest-neighbor relation Rk
B is accurate, otherwise X w.r.t. Rk

B is rough. Rk
B Xð Þ#X#Rk

B Xð Þ.
The boundary region of X w.r.t. B in S is
BNk
B Xð Þ ¼ Rk

B Xð Þ � Rk
B Xð Þ: ð4Þ
The size of BNk
B Xð Þ reflects the roughness of X w.r.t. Rk

B. The larger the size of BNk
B Xð Þ is, the rougher the X w.r.t. Rk

B is.

Definition 3. Let S ¼ U; C;Dð Þ be a decision information system and U=D ¼ D1;D2; � � � ;Drf g. 8B#C and a given positive
integer k, the upper and lower approximations of D w.r.t. B are
Rk
B Dð Þ ¼ [r

i¼1
Rk
B Dið Þ;

Rk
B Dð Þ ¼ [r

i¼1
Rk
B Dið Þ:

ð5Þ
Based on Rk
B Dð Þ and Rk

B Dð Þ, the decision boundary region and decision positive region of D w.r.t. B are
BNk
B Dð Þ ¼ Rk

B Dð Þ � Rk
B Dð Þ;

POSkB Dð Þ ¼ cupr
i¼1R

k
B Dið Þ:

ð6Þ
jBNk
B Dð Þj reflects the roughness of decision D w.r.t. Rk

B. The larger the size of BNk
B Dð Þ is, the rougher the D w.r.t. Rk

B is. jPOSkB Dð Þj
reflects the consistency of decision D w.r.t. Rk

B.

Property 2. Let B#C and U=D ¼ D1;D2; � � � ;Drf g, we have
1ð Þ Rk
B Dð Þ ¼ U;

2ð Þ POSkB Dð Þ \ BNk
B Dð Þ ¼£;

3ð Þ POSkB Dð Þ [ BNk
B Dð Þ ¼ Rk

B Dð Þ:
Proof 2. (1) There are Di #Rk
B Dið Þ and [

r

i¼1
Di ¼ U. From Definition 3, we have U#Rk

B Dð Þ and Rk
B Dð Þ#U. So Rk

B Dð Þ ¼ U.

(2) By BNk
B Dð Þ ¼ Rk

B Dð Þ � Rk
B Dð Þ and POSkB Dð Þ ¼ [r

i¼1
Rk
B Dið Þ ¼ Rk

B Dð Þ, there is POSkB Dð Þ \ BNk
B Dð Þ ¼£.

(3) According to POSkB Dð Þ \ BNk
B Dð Þ ¼£ and BNk

B Dð Þ ¼ Rk
B Dð Þ � POSkB Dð Þ, so POSkB Dð Þ [ BNk

B Dð Þ ¼ Rk
B Dð Þ.
306



M. Hu, Eric C.C. Tsang, Y. Guo et al. Information Sciences 584 (2022) 301–324
Definition 4. Let S ¼ U;C;Dð Þ be a decision information system. 8B#C and a given positive integer k, the dependency degree
of D w.r.t. B is defined as
ckB Dð Þ ¼ jPOS
k
B Dð Þj
jUj : ð7Þ
ckB Dð Þ reflects the ability of B to approximate D. As POSkB Dð Þ#U, we have 0 6 ckB Dð Þ 6 1. The larger the ckB Dð Þ is, the stronger
the approximation ability of B w.r.t. D is. If ckB Dð Þ ¼ 1, then B w.r.t. D is consistent for a given k; otherwise, B w.r.t. D is par-
tially consistent.

To understand the calculation process of k-nearest-neighbor rough sets and its difference from NRS, we calculate the
dependency degrees of B1 ¼ a1; a2f g and B2 ¼ a3; a4f g, using the information in Example 2.1. Given k ¼ 5, we get
top5

a1
x1ð Þ ¼ x1; x2; x4; x5; x7f g; top5

a2
x1ð Þ ¼ x1; x2; x8; x10; x11f g; top5

a3
x1ð Þ ¼ x1; x2; x3; x7; x8f g and top5

a4
x1ð Þ ¼ x1; x2; x7; x9; x10f g, so

top5
B1

x1ð Þ ¼ top5
a1

x1ð Þ \ top5
a2

x1ð Þ ¼ x1; x2f g and top5
B2

x1ð Þ ¼ top5
a3

x1ð Þ \ top5
a4

x1ð Þ ¼ x1; x2; x7f g. The k-nearest-neighbor informa-
tion granules of all objects in universe for B1 and B2 are shown in Table 2. The k-nearest-neighbor relations for B1 and B2 are
R5
B1
¼

1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 1 1

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

;

and
R5
B2
¼

1 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0
1 1 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

:

Table 2
K-Nearest-Neighbor information granules for B1 and B2.

U B1 B2

x1 x1; x2f g x1; x2; x7f g
x2 x1; x2; x4; x5f g x2; x7f g
x3 x2; x3; x4; x5f g x3; x4; x8f g
x4 x1; x2; x4; x5f g x3; x4; x8f g
x5 x2; x3; x4; x5f g x5; x9f g
x6 x4; x6f g x6; x11f g
x7 x7; x9f g x1; x2; x7f g
x8 x8; x10; x11f g x3; x4; x8f g
x9 x7; x8; x9; x11f g x9; x10f g
x10 x8; x10; x11f g x10f g
x11 x8; x10; x11f g x11f g
x12 x8; x9; x11; x12f g x11; x12f g
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The relation matrices R5
B1

and R5
B2

are not symmetric. U=D ¼ D1;D2f g, where D1 ¼ x1; x2; x3; x4; x5; x6f g and
D2 ¼ x7; x8; x9; x10; x11; x12f g. From Definition 2, we can get
R5
B1

D1ð Þ ¼ x1; x2; x3; x4; x5; x6f g;
R5
B1

D2ð Þ ¼ x7; x8; x9; x10; x11; x12f g;
R5
B1

D1ð Þ ¼ x1; x2; x3; x4; x5; x6f g;
R5
B1

D2ð Þ ¼ x7; x8; x9; x10; x11; x12f g;

and
R5
B2

D1ð Þ ¼ x1; x2; x3; x4; x5; x6; x7; x8f g;
R5
B2

D2ð Þ ¼ U;

R5
B2

D1ð Þ ¼£;

R5
B2

D2ð Þ ¼ x9; x10; x11; x12f g:
Therefore, we have POS5B1 Dð Þ ¼ U and POS5B2 Dð Þ ¼ x9; x10; x11; x12f g. According to the Definition 4, we get c5B1 Dð Þ ¼ 1 and

c5B2 Dð Þ ¼ 0:3333. From the view of the dependency degree of k-nearest-neighbor rough sets, the approximation ability of
B1 is better than that of B2. From Fig. 2, we find that the separability of B1 is also better than that of B2. From the above dis-
cussion, we know that the dependency degree of k-nearest-neighbor rough sets is better than that of neighborhood rough
sets to evaluate the approximation ability and separability of attribute subsets.

Property 3. (Type-I monotonicity). Let S ¼ U;C;Dð Þ be a decision information system. 8B1 #B2 #C and a given positive
integer k, we have
1ð Þ Rk
B1
� Rk

B2
;

2ð Þ 8X#U;Rk
B1

Xð Þ � Rk
B2

Xð Þ; Rk
B1

Xð Þ#Rk
B2

Xð Þ;
3ð Þ POSkB1 Dð Þ# POSkB2 Dð Þ; ckB1 Dð Þ 6 ckB2 Dð Þ:
Proof 3. (1) According to B2 ¼ B1 [ B2 � B1ð Þ and Property 1, we have Rk
B2
¼ Rk

B1
\ Rk

B2�B1 , so Rk
B1
� Rk

B2
.

(2) From B1 #B2 and Definition 1, there are topkB2
xð Þ# topkB1 xð Þ;8x 2 U. If x 2 Rk

B2
Xð Þ, we have topkB2

xð Þ \ X –£, then

topkB1 xð Þ \ X –£, we obtain x 2 Rk
B1

Xð Þ by Definition 2, so Rk
B1

Xð Þ � Rk
B2

Xð Þ; if x 2 Rk
B1

Xð Þ, we have topkB1
xð Þ#X, then

topkB2 xð Þ#X, we know x 2 Rk
B2

Xð Þ, so Rk
B1 Xð Þ#Rk

B2
Xð Þ.

(3) According to (2), 8Di 2 U=D, we have Rk
B1 Dið Þ#Rk

B2
Dið Þ, so POSkB1

Dð Þ ¼ [
Di

Rk
B1 Dið Þ# [

Di

Rk
B2

Dið Þ ¼ POSkB2
Dð Þ, namely

POSkB1 Dð Þ# POSkB2
Dð Þ; then from Definition 4 we have ckB1 Dð Þ 6 ckB2

Dð Þ.
From Property 3, we find that with the gradual increase of the number of attributes, the dependency function is mono-

tonic and nondecreasing. The purpose of attribute reduction is to find a minimum attribute subset with the same character-
izing ability as the original attribute set. The monotonicity of dependency function can be used to construct a greedy search
algorithm. With the gradual increase of the attributes that cause the greatest change in dependency, we are committed to
quickly finding a minimum attribute subset that has the same or almost the same approximation ability as the original con-
ditional attribute set.

Property 4. (Type-II monotonicity). Let S ¼ U;C;Dð Þ be a decision information system. 8B#C and two given positive
integers k1 and k2; k1 6 k2, we have
1ð Þ Rk1
B #Rk2

B ;

2ð Þ 8X#U;Rk1
B Xð Þ#Rk2

B Xð Þ Rk1
B Xð Þ � Rk2

B Xð Þ;
3ð Þ POSk1B Dð Þ � POSk2B Dð Þ; ck1B Dð ÞP ck2B Dð Þ:
Proof 4. (1) As k1 6 k2;8a 2 B, there is topk1
a # topk2

a , then topk1
B # topk2

B , so Rk1
B #Rk2

B .

(2) 8x 2 U, by k1 6 k2, there is topk1B xð Þ# topk2B xð Þ. If x 2 Rk1
B Xð Þ, we can get topk1B xð Þ \ X –£, which implies conclusion

topk2B xð Þ \ X –£, namely x 2 Rk2
B Xð Þ, so Rk1

B Xð Þ#Rk2
B Xð Þ. If x 2 Rk2

B Xð Þ, we get topk2B xð Þ#X, further deduce the conclusion

topk1B xð Þ#X, namely x 2 Rk1
B Xð Þ, so Rk1

B Xð Þ � Rk2
B Xð Þ.
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(3) According to (2), 8Di 2 U=D, we have Rk1
B Dið Þ � Rk2

B Dið Þ. From Definitions 3 and 4, there are POSk1B Dð Þ � POSk2B Dð Þ and
ckB1

Dð ÞP ckB2
Dð Þ.

Property 4 shows that the dependency degree is closely related to the size of information granules. However, for a given
attribute set, the size of information granules is controlled by parameter k. By conclusions (1) and (3) of Property 4, we know
that with the increase of k, the size of information granules does not decrease, while the dependency degree does not
increase. That is to say, the smaller the k is, the stronger the approximation ability of attribute subsets is; otherwise, the
weaker the approximation ability is. But if k is too small, it will lead to the phenomenon of early convergence. The parameter
k of k-nearest-neighbor rough sets is very important for attribute reduction. Later, we will discuss how to set it.

From Properties 3 and 4, it can be seen that the ability of an attribute set to approximate decisions depends not only on
the attribute set of characterizing objects of universe, but also on the size of parameter k of k-nearest-neighbor rough sets.
Both attribute sets and parameter k can control the granularity of information granules.

4. Attribute reduction based on overlap degree and K-nearest-neighbor rough sets

The computation of k-nearest-neighbor information granules is very time-consuming, and the efficiency of heuristic
search strategy is also very low. To solve the problem of computational efficiency, we will improve the efficiency of reduction
from the search strategy point of view. We will define some measures to pre-evaluate degree of importance of the single
attribute, and pre-sort attributes based on the degree of importance. Starting from the attribute with the lowest importance,
we use dependency degree to judge whether the attribute can be removed one by one.

The purposes of attribute reduction are to retain the attributes with high separability and strong approximation ability,
and to remove the trivial attributes. If the coincidence degree (CD) of the raw data from different categories is high, and CD of
the reduced data from different categories is low, then the degree of importance of the retained attributes is high. If the dis-
tance (DIS) of the raw data from different categories is long and the DIS of reduced data from different categories is short,
then the degree of importance of the retained attributes is high. From Fig. 3, we can see that the yellow area is the CD
and the red line is the DIS of objects from different categories. In the process of search reducts, we need to select attributes
which can decrease the CD and increase the DIS.

Definition 5. Let S ¼ U;C;Dð Þ be a decision information system, a 2 C; x 2 U;Di;Dj 2 U=D, the coincidence degree (CD) of
objects between Di and Dj for a is defined as
CDa Di;Dj
� � ¼

j ma
Di
;Ma

Di

h i
\ ma

Dj
;Ma

Dj

h i
j

j ma
Di
;Ma

Di

h i
[ ma

Dj
;Ma

Dj

h i
j
; ð8Þ
where ma
Di
¼ min

x2Di

f x; að Þ and Ma
Di
¼max

x2Di

f x; að Þ. When j ma
Di
;Ma

Di

h i
[ ma

Dj
;Ma

Dj

h i
j ¼ 0, we set CDa Di;Dj

� � ¼
j ma

Di
;Ma

Di

h i
\ ma

Dj
;Ma

Dj

h i
jþeps

j ma
Di
;Ma

Di

h i
[ ma

Dj
;Ma

Dj

h i
jþeps

,

where eps is a very small positive number. CDa Di;Dj
� �

represents the coincidence degree of objects between Di and Dj for
a. The smaller the CDa Di;Dj

� �
is, the higher the coincidence degree of objects between Di and Dj is. 0 6 CDa Di;Dj

� �
6 1.
Definition 6. Let S ¼ U;C;Dð Þ be a decision information system, a 2 C;U=D ¼ D1;D2; � � � ;Drf g, the coincidence degree of S for
a is defined as
(b) Reduced data(a) Raw data

n

CD DIS

Fig. 3. Overlap degrees of objects from different categories on raw and reduced data.
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Table 3
CD;DIS

C

a1
a2
a3
a4
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CDa Sð Þ ¼
X
Di–Dj

CDa Di;Dj
� �

: ð9Þ
CDa Sð Þ represents the coincidence degree of objects between different decisions. Besides coincidence degree can reflect
the ability to distinguish objects with different decisions, the distance between objects can also measure the ability to dis-
tinguish objects with different decisions. Next, we will introduce the distance of objects with different decisions to evaluate
the importance of attributes.
Definition 7. Let S ¼ U;C;Dð Þ be a decision information system, a 2 C;Di;Dj 2 U=D, the distance of objects between Di and Dj

for a is defined as
DISa Di;Dj
� � ¼ jCa Dið Þ � Ca Dj

� �j
f amax Di;Dj

� �� f amin Di;Dj
� � ; ð10Þ
where Ca Dið Þ ¼ 1
jDi j

P
x2Di

f x; að Þ; f amax Di;Dj
� � ¼ max

x2Di[Dj

f x; að Þ and f amin Di;Dj
� � ¼ min

x2Di[Dj

f x; að Þ. If f amax Di;Dj
� � ¼ f amin Di;Dj

� �
, we set

DISa Di;Dj
� � ¼ jCa Dið Þ�Ca Djð Þj

f amax Di ;Djð Þ�f amin Di ;Djð Þþeps. 0 6 DISa Di;Dj
� �

6 1. The larger the DISa Di;Dj
� �

is, the stronger the ability of a to distin-

guish objects with different decisions is.
Definition 8. Let S ¼ U;C;Dð Þ be a decision information system and U=D ¼ D1;D2; � � � ;Drf g. 8a 2 C;Di;Dj 2 U=D, the distance
(DIS) of objects in S for a is defined as
DISa Sð Þ ¼
X
Di–Dj

DISa Di;Dj
� �

; ð11Þ
where DISa Di;Dj
� �

is the distance of objects between Di and Dj for a. Obviously, 0 6 DISa Di;Dj
� �

6 r r�1ð Þ
2 . The larger the DISa Sð Þ

is, the higher the ability of a to distinguish objects is.
Definition 9. Let S ¼ U;C;Dð Þ be a decision information system, a 2 C, the overlap degree (OD) of objects in S for a is defined
as
ODa Sð Þ ¼ CDa Sð Þ
DISa Sð Þ : ð12Þ
ODa Sð Þ is used to evaluate the quality of a in terms of separability. The smaller the overlap degree ODa Sð Þ is, the higher the
separability of a is, and the more important a is.

Further considering Example 2.1, we obtain the CD;DIS and OD of each attribute as shown in Table 3. In Example 2.1, from
the view of the dependency degree of k-nearest-neighbor rough sets, we know that the approximation ability of a1; a2f g is
better than that of a3; a4f g. From Table 3, we find that the CD of S for a1 and a2 is much less than that of a3 and a4 and the DIS
of S for a1 and a2 is greater than that of a3 and a4. Furthermore, the OD of S for a1 and a2 is far lower than that of a3 and a4. We
use OD to pre-sort the attributes, then use the sorted attributes to accelerate the speed of attribute reduction based on k-
nearest-neighbor rough sets. We sort the four attributes in descending order by OD to get SORT Cð Þ ¼ a4; a3; a2; a1ð Þ. We
use the dependency degree to remove redundant attributes in the sorted attributes one by one. Because
c5a3 ;a2 ;a1f g Dð Þ ¼ c5a4 ;a3 ;a2 ;a1f g Dð Þ; a4 is removed. c5a2 ;a1f g Dð Þ ¼ c5a3 ;a2 ;a1f g Dð Þ, so a3 is also removed. Because c5a1f g Dð Þ < c5a2 ;a1f g Dð Þ; a2
is retained. c5a2f g Dð Þ < c5a2 ;a1f g Dð Þ, so a1 is also retained.

Based on the above discussion, we can quickly find a reduct by OD and k-nearest-neighbor rough sets, and the reduct has
a low OD while keeping the dependency degree unchanged. In other words, the reduct has high separability and strong abil-
ity to approximate decisions. We develop a reduction algorithm by using OD and k-nearest-neighbor rough set theory.

Definition 10. Let S ¼ U;C;Dð Þ be a decision information system, B#C; a 2 B, the significance of attribute a relative to B and
D is defined as
and OD of each attribute in Example 2.1.

CDa DISa ODa

0.0909 0.5909 0.1538
0.0909 0.5758 0.1579
0.7250 0.2062 3.5152
0.8765 0.0185 47.3333
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SIG a;B;Dð Þ ¼ ckB Dð Þ � ckB� af g Dð Þ: ð13Þ

By the Type-I monotonicity, there is SIG a;B;Dð ÞP 0. When SIG a;B;Dð Þ ¼ 0, we call a an unnecessary attribute with

respect to B and D. If SIG a;B;Dð Þ > 0, then a is a necessary attribute. We develop a reduction algorithm based on OD and
k-nearest-neighbor rough sets (OD&KNN), which is shown in Algorithm 1.
Algorithm 1. Attribute reduction based on OD and k-nearest-neighbor rough sets (OD&KNN)

Input: A decision information system S ¼ U;C;Dð Þ and a parameter k.

Output: A reduct red.
1: for each a 2 C
2: Compute ODa Sð Þ by formula (12);
3: end for
4: All attributes are sorted in descending order by ODa Sð Þ, and the result is marked as SORT Cð Þ;
5: Initialize: red �SORT Cð Þ;/* where attributes in SORT Cð Þ are ordered */
6: Compute ckred Dð Þ by formula (7);
7: for each a in SORT Cð Þ do
8: SIG a; red;Dð Þ ¼ ckred Dð Þ � ckred�a Dð Þ;
9: if SIG a; red;Dð Þ ¼ 0 then
10: red �red� af g;/* remove the unnecessary attribute a */
11: end if
12: end for
13: return red.

In Algorithm 1, steps 1–3 compute the overlap degree (OD) of objects in S for each attribute of C, and the time complexity
is O jUj � jCjð Þ. In steps 4–5, the descending sorted attribute set SORT Cð Þ is obtained based on the overlap degree with the
time complexity O jCj � logjCjð Þ and red is initialized to SORT Cð Þ with the time complexity O 1ð Þ. Step 6 calculates the depen-

dency degree of D with respect to red namely ckred Dð Þ with the time complexity O jUj2 � jU=Dj
� �

. Steps 7–12 remove the

unnecessary attributes sequentially, and the time complexity is O jUj2 � jU=Dj � jCj
� �

. Step 13 is to return a reduct, and

the time complexity is O 1ð Þ. The time complexity of Algorithm 1 is O jUj2 � jU=Dj � jCj
� �

.

For high-dimensional data, we can quickly reduce the dimension of data by using half-division searching strategy. The
strategy is presented in Algorithm 2. Algorithm 2 is a subalgorithm of Algorithm 1 for dealing with high-dimensional data.
When the dimension of the data is very high, we use Algorithm 2 after the step 4 of Algorithm 1 to quickly reduce the dimen-
sion of data.

Algorithm 2. Half-division searching to reduce the dimension of high-dimensional data

Input: S ¼ U;C;Dð Þ, SORT Cð Þ, k and dim.

Output: New sorted attributes SORT Cð Þ.
1: Compute ckSORT Cð Þ Dð Þ by formula (7);

2: While the size of SORT Cð Þ is greater that dim do
3: Take the last half of the attributes in SORT Cð Þ as Half ;
4: Compute ckHalf Dð Þ by formula (7);

5: if ckHalf Dð Þ ¼¼ ckSORT Cð Þ Dð Þ then
6: SORT Cð Þ �Half ;
7: else
8: break;
9: end if
10: end while
11: return SORT Cð Þ.
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5. Experimental analysis

We will verify the effectiveness of the proposed OD&KNN on a number of classification datasets. We evaluate the perfor-
mance of OD&KNN by comparing it with four other advanced neighborhood reduction algorithms: k-nearest neighborhood
rough sets (NNRS) [37], neighborhood rough sets (NRS) [19], variable precision k-nearest neighbor rough sets (FarVPKNN)
[18] and attribute group (AG) [4]. The evaluation metrics of comparative analysis are the running time, the number of
selected attributes and classification accuracies of the reduced data.

5.1. Experimental setup

We download eleven datasets from UCI Machine Learning Repository [10] (Nos. 1–8) and ELVIRA Biomedical Dataset
Repository [3] (Nos. 9–11). The information of these datasets is outlined in Table 4, and all conditional attributes are normal-
ized to 0;1½ � by using the Max–Min normalization. Two classifiers KNN (k ¼ 3) and RBF-SVM (r ¼ 10 and C ¼ 10) are used to
evaluate classification performance of reduced data. All reduction experiments adopt 5-fold cross validation. The average
result of the 5 results is regarded as final result. All programs are executed in MATLAB 2015B and run in the hardware envi-
ronment with Inter(R) Core(TM) i7-4790 CPU @ 3.60 GHz 3.60 GHz, with 16 GB RAM.

NNRS is an attribute reduction algorithm based on the dependency of attributes with respect to decisions by using the k-
nearest neighborhood information granules, which are induced by unit neighborhoods and k-nearest neighbors simultane-
ously. NNRS has a neighborhood parameter k and a termination threshold h that need to be set. NRS is an attribute reduction
algorithm by using d-neighborhood granules to approximate decisions. It has a neighborhood parameter d that needs to be
set. FarVPKNN uses inclusion degrees of k-nearest neighbor information granules and decisions to evaluate the importance
of attribute subsets. It has a neighborhood parameter k and a precision parameter b that need to be set. To reduce the num-
ber of attribute evaluations and the search range of calculating neighborhood information granules, AG combines the bucket
and attribute group to perform attribute selection. AG has a neighborhood parameter d and the number of groups that need
to be set.

Researchers set neighborhood parameters k and d mainly through experiments to search and observe the performance of
reduction algorithms for different parameters. According to the research results of predecessors [18], the value of k is gen-
erally set as 0:25N and the value of d is set as 0:25. k is set to the value that makes reduction algorithms achieve approximate
optimal performance on most datasets. For example, in the literature [37], the authors search for the optimal value of param-
eter k from 0:01N to 0:1N with step 0:01N, such that the reduction algorithm can select an attribute subset that has the high-
est classification ability for the reduced data, where N is the number of objects. By observation, they set k ¼ 0:05N. In the
literature [18], the authors observe the performance of the reduction algorithm for different neighborhood parameters of
k (from 0:1N to 0:5N with step 0:05N), and find that the performance of the algorithm is better on most datasets when
k ¼ 0:25N. In the literature [37], the k-nearest neighborhood of an object with respect to an attribute subset is computed
for all the attributes of the attribute subset. In the literature [18], the k-nearest neighbor of an object about an attribute sub-
set is to first calculate the k-nearest neighbor of each attribute in the attribute subset, then take the intersection of the k-
nearest neighbors of each attribute in the attribute subset. The k-nearest neighbor of this paper is similar to the k-nearest
neighbor of reference [18].

In our experiments, we set the parameters of each algorithm as follows: In our OD&KNN algorithm, we set k ¼ 0:25N
based on previous research results [18]. At the same time, in order to verify the reliability of the results [18], we search k
from 0:05N to 0:5N with step 0:05N, and the detailed search results of k on all datasets are shown in Figs. 4–14. It should
be pointed out that for high-dimensional data (more that 1000), in the above experiments we set dim ¼ 100 to reduce
the dimension of data in advance. As can be seen from Figs. 4–14, KNN and SVM reach the relatively high accuracy in most
cases when k ¼ 0:25N. For NNRS, k ¼ 0:05N and termination threshold h ¼ 0:01 [37]. If k ¼ 0:25N, most of the neighborhood
information granules cannot be included in any decision class. In such case, the approximate ability of the attributes with
respect to decisions cannot be properly described. Therefore, we still set k ¼ 0:05N according to the research results of ref-
Table 4
Description of datasets.

No. Name Objects Attributes Classes

1 Seeds 210 8 3
2 Wine 178 14 3
3 Australian 690 15 2
4 Pop_failures 540 19 2
5 Segment 2310 20 7
6 Wdbc 569 31 2
7 Wpbc 198 34 2
8 Sonar 208 61 2
9 Leukemia-ALLAML 72 7130 2
10 DLBCL-Harvard 77 7130 2
11 Lung-Cancer-Harvard2 181 12534 2
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erence [37]. For FarVPKNN, k ¼ 0:25N and precision b ¼ 0:8 [18]. For NRS, neighborhood parameter d ¼ 0:25 [19]. For AG,
neighborhood parameter d ¼ 0:25, for low dimensional data and high-dimensional data (more than 1000), the number of
groups is set to djATj=3e and 50, respectively [4].
5.2. Experimental comparison

The running time of five reduction algorithms is presented in Table 5. Out of the 11 cases, NNRS, NRS, FarVPKNN, AG and
OD&KNN achieve the shortest running time in 0, 0, 1, 5 and 5, respectively. When running time of AG is the least, it is mainly
concentrated on low dimensional data, and AG performs the worst on three high-dimensional data. However, on the three
high-dimensional data, the running time of OD&KNN is always the least. The running time of OD&KNN is always less than
that of NNRS on all datasets. The running time of OD&KNN is 20� 70% lower than that of NNRS. The running time of
OD&KNN is less than that of NRS on ten datasets (except Seeds). The running time of OD&KNN is less than that of FarVPKNN
on nine datasets (except Australian and Pop failures). To sum up, our reduction algorithm OD&KNN is feasible and efficient in
computation time from the experimental results.

The above time comparison intuitively reflects the feasibility of the proposed method OD&KNN in the calculation of
reduction. Next, we analyze the complexity of the above five algorithms from the theoretical level. Detailed comparison
results are shown in Table 6. From Table 6, we can see that the time complexity of NRS and FarVPKNN is the same. It should
be pointed out that in the real data, generally speaking, the number of attributes (features) is greater than or far greater than
the number of decision classes (categories). In this case, we rank the five algorithms according to the complexity as OD&KNN
< NNRS < NRS = FarVPKNN <= AG. Moreover, the complexity of OD&KNN is about jU=Dj=jCj of that of NNRS and is about 1=jCj
of those of NRS, FarVPKNN and AG.

At the same time, we compare the absolute and relative number of selected attributes which are obtained by reduction
algorithms and the separability of these attributes. The absolute and relative numbers of these attributes are shown in
Table 7. From Table 7, we know that the absolute average number of selected attributes by OD&KNN (6.09) is far less than
that of raw data (2453.18). Therefore, the reduction performance of OD&KNN is effective and feasible. Comparing the abso-
lute and relative average numbers of attributes retained by the five reduction algorithms on all datasets, it can be seen that
OD&KNN (6.09, 28.45%) removes more features than NNRS (7.45, 38.29%), NRS (10.18, 47.03%) and AG (12.31, 51.84%), sec-
ond only to FarVPKNN (4.04, 19.47%).

Next, we analyze the performance of two classifiers on the data subsets corresponding to the selected attributes to further
verify the advantages of the reduction algorithms in attribute selection. The detailed classification accuracy results of the
two classifiers are shown in Tables 8,9. The numbers before and after � are the average classification accuracy and standard
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Fig. 4. Classification accuracies of Seeds for different k (k ¼ k0N).
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Fig. 5. Classification accuracies of Wine for different k (k ¼ k0N).
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Fig. 6. Classification accuracies of Australian for different k (k ¼ k0N).
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Fig. 7. Classification accuracies of Pop_failures for different k (k ¼ k0N).
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Fig. 8. Classification accuracies of Segment for different k (k ¼ k0N).
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Fig. 9. Classification accuracies of Wdbc for different k (k ¼ k0N).
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Fig. 10. Classification accuracies of Wpbc for different k (k ¼ k0N).
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Fig. 11. Classification accuracies of Sonar for different k (k ¼ k0N).
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Fig. 12. Classification accuracies of Leukemia-ALLAML for different k (k ¼ k0N).
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Fig. 13. Classification accuracies of DLBCL-Harvard for different k (k ¼ k0N).
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Fig. 14. Classification accuracies of Lung-Cancer-Harvard2 for different k (k ¼ k0N).
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Table 5
Running time of different reduction algorithms (s).

Datasets NNRS NRS FarVPKNN AG OD&KNN

Seeds 0:04460 0:01478 0:03162 0:01302 0:02012
Wine 0:06778 0:03340 0:04592 0:01324 0:02360
Australian 1:33760 0:97776 0:38186 0:45372 0:45076
Pop_failures 0:47104 0:57770 0:29124 0:13676 0:33520
Segment 15:68770 39:98910 40:03250 15:97070 12:37550
Wdbc 1:03920 4:25570 1:68310 0:91508 0:77436
Wpbc 0:33938 0:25098 0:20656 0:04850 0:09636
Sonar 0:63118 0:37780 0:35120 0:04214 0:27950
Leukemia-ALLAML 5:25990 3:10260 3:53090 6:78900 1:80160
DLBCL-Harvard 6:68570 2:73880 4:26850 6:35440 1:99550
Lung-Cancer-Harvard2 32:79460 22:46360 19:53760 58:37850 15:94250

Table 6
Time complexity of different reduction algorithms.

Algorithms Stage complexity Total complexity

NNRS [37] step 1: O jUj2 � jCj
� �

O jUj2 � jCj2
� �

step 2: O 1ð Þ
steps 3–22: O jUj � jCj � jUj þ logjUjð Þð Þ
step 23: O jCjð Þ
step 24: O 1ð Þ
step 25: O jUj � jCj2 � jUj þ logjUjð Þ

� �

NRS [19] step 1: O 1ð Þ O jUj2 � jCj2 � jU=Dj
� �

steps 2–5: O jUj2 � jCj � jU=Dj
� �

step 6: O jCjð Þ
steps 7–12: O jUj2 � jCj2 � jU=Dj

� �

FarVPKNN [18] steps 1–2: O jUj2 � jCj
� �

O jUj2 � jCj2 � jU=Dj
� �

step 3: O 1ð Þ
step 4: O jUj2 � jCj � jU=Dj

� �

step 5: O jCjð Þ
step 6: O jUj2 � jCj2 � jU=Dj

� �

AG [4] step 1: O 1ð Þ O jUj � jCj2 �max jUj � jU=Dj; Lf g
� �

step 2: O jUj � jCj2 � L
� �

step 3: O jUj2 � jCj2 � jU=Dj
� �

step 4: O jUj2 � jCj � jU=Dj
� �

step 5: O 1ð Þ
OD&KNN steps 1–3: O jUj � jCjð Þ O jUj2 � jCj � jU=Dj

� �

steps 4–5: O jCj � logjCjð Þ
step 6: O jUj2 � jU=Dj

� �

steps 7–12: O jUj2 � jCj � jU=Dj
� �

step 13: O 1ð Þ

* jUj is the number of objects. jCj is the number of conditional attributes. jU=Dj is the number of decision
classes. L is the maximum number of iterations of k-means clustering.
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deviation of the 5-fold cross validation, respectively. In the average rows, the number after� is standard deviation of average
classification accuracy of each dataset. From Tables 8,9, we know that out of the 22 cases, NNRS, NRS, FarVPKNN, AG and
OD&KNN achieve the highest classification accuracy in 2, 1, 1, 1 and 17 cases, respectively. Under two classifiers and when
compared with the performance of raw data, OD&KNN performs better than raw data 18 times; NNRS and NRS perform bet-
ter than raw data 12 times; FarVPKNN performs better than raw data 9 times; and AG performs better than raw data 8 times.
Among the five reduction algorithms, we find that OD&KNN ranks the first, NRS ranks the second, NNRS ranks the third, AG
ranks the fourth, FarVPKNN ranks the last according to the average classification results.

Meanwhile, we use statistical test methods to show the differences among reduction algorithms. First, the commonly
used Friedman test [13] is chosen to verify the existence of significant differences. Let N be the number of data sets, k be
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Table 8
Classification accuracies of reduced data by reduction algorithms under KNN.

Datasets RAW NNRS NRS FarVPKNN AG OD&KNN

Seeds 91:90� 5:22 91:43� 4:94 91:90� 5:22 91:90� 5:22 91:90� 5:22 94:29� 2:71
Wine 93:81� 3:15 94:95� 2:32 96:08� 1:49 91:62� 5:20 94:37� 6:03 97:19� 2:82

Australian 83:04� 3:72 83:04� 3:72 83:04� 3:72 61:45� 12:53 83:04� 3:72 86:23� 0:89
Pop_failures 91:30� 2:97 92:04� 2:75 90:93� 2:21 88:52� 1:68 91:48� 2:31 95:74� 1:40
Segment 95:84� 0:83 95:89� 0:82 95:84� 0:83 95:93� 1:08 95:84� 0:83 96:28� 0:47
Wdbc 95:78� 1:81 94:20� 2:70 96:13� 1:49 92:09� 2:73 95:78� 1:81 97:19� 0:74
Wpbc 73:74� 12:49 72:23� 3:87 74:22� 10:42 74:79� 4:40 70:19� 7:79 74:19� 5:76
Sonar 79:35� 5:64 82:23� 6:83 77:89� 1:95 76:93� 1:97 75:45� 7:67 80:78� 6:04

Leukemia-ALLAML 80:57� 11:53 95:81� 6:34 91:43� 12:78 86:19� 10:79 80:67� 8:86 97:33� 3:65
DLBCL-Harvard 80:42� 15:73 88:42� 6:94 92:25� 2:66 87� 10:03 80:58� 7:51 94:83� 5:28

Lung-Cancer-Harvard2 92:27� 3:03 98:35� 1:51 98:89� 1:52 74:01� 4:36 91:68� 5:22 99:44� 1:24
Average 87:09� 7:79 89:87� 7:83 89:87� 8:02 83:68� 10:51 86:45� 8:86 92:14� 8:12

Table 9
Classification accuracies of reduced data by reduction algorithms under SVM.

Datasets RAW NNRS NRS FarVPKNN AG OD&KNN

Seeds 92:38� 1:99 92:86� 2:92 92:38� 1:99 92:86� 2:92 92:38� 1:99 95:24� 2:38
Wine 96:62� 3:70 94:37� 2:84 97:19� 2:82 90:44� 4:28 94:92� 3:68 98:32� 2:49

Australian 84:35� 2:64 84:35� 2:64 84:35� 2:64 85:51� 2:71 84:35� 2:64 85:94� 2:69
Pop_failures 95:37� 1:46 94:44� 1:73 92:41� 0:77 91:48� 2:57 91:48� 2:73 95:37� 2:27
Segment 95:80� 0:79 95:93� 0:60 95:80� 0:79 94:07� 0:50 95:80� 0:79 95:41� 0:77
Wdbc 97:54� 1:58 96:66� 0:75 96:66� 2:09 95:96� 1:33 97:54� 1:81 97:19� 1:91
Wpbc 74:23� 10:41 74:22� 5:62 76:72� 7:43 77:83� 6:32 77:22� 10:53 78:22� 8:33
Sonar 81:79� 6:56 76:41� 4:80 73:09� 3:01 72:16� 6:73 71:65� 9:93 79:79� 3:74

Leukemia-ALLAML 65:52� 13:15 88:86� 10:83 92:95� 7:15 88:95� 6:19 73:71� 13:12 93:14� 4:72
DLBCL-Harvard 75:25� 12:94 76:67� 8:58 91:00� 5:69 83:33� 16:23 76:67� 5:41 93:67� 10:83

Lung-Cancer-Harvard2 82:90� 5:90 96:68� 3:05 98:89� 1:52 82:87� 5:36 92:79� 6:41 97:81� 2:27
Average 85:61� 10:83 88:31� 8:86 90:13� 8:51 86:86� 7:33 86:23� 9:74 91:83� 7:17

Table 7
Number of selected attributes for different reduction algorithms.

Datasets RAW The absolute number of attributes retained The relative number of attributes retained (%)

NNRS NRS FarVPKNN AG OD&KNN NNRS NRS FarVPKNN AG OD&KNN

Seeds 7 6 7 5 7 5 85:71 100:00 71:43 100:00 71:43
Wine 13 7 7 4 8:2 5 53:85 53:85 30:77 63:08 38:46

Australian 14 14 14 1 14 8 100:00 100:00 7:14 100:00 57:14
Pop_failures 18 8 7 1 8:4 6 44:44 38:89 5:56 46:67 33:33
Segment 19 12 18 10 19 11 63:16 94:74 52:63 100:00 57:89
Wdbc 30 10 23 6 28 7 33:33 76:67 20:00 93:33 23:33
Wpbc 33 9 12 6 15:8 7 27:27 36:36 18:18 47:88 21:21
Sonar 60 8 10 5 11:4 6 13:33 16:67 8:33 19:00 10:00

Leukemia-ALLAML 7129 2 5 2:4 7:2 3:4 0:03 0:07 0:03 0:10 0:05
DLBCL-Harvard 7129 3 4 3 8:4 4:6 0:04 0:06 0:04 0:12 0:06

Lung-Cancer-Harvard2 12533 3 5 1 8 4 0:02 0:04 0:01 0:06 0:03
Average 2453:18 7:45 10:18 4:04 12:31 6:09 38:29 47:03 19:47 51:84 28:45
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the number of reduction algorithms and Ri be the average rank of the ith algorithm on all data sets. F follows a Fisher distri-

bution with k� 1 and k� 1ð Þ N � 1ð Þ degrees of freedom. The Friedman statistic is defined as v2
F ¼ 12N

k kþ1ð Þ
Pk

i¼1R
2
i � k kþ1ð Þ2

4

� �
and

F ¼ N�1ð Þv2F
N k�1ð Þ�v2F

. We rank the reduction algorithms under the two classifiers, and the detailed ranking results are shown in

Table 10. By the definition of the Friedman statistic, we know F ¼ 9:8207 under KNN and F ¼ 5:6436 under SVM. These
two values of F are all greater than the critical value F k� 1; k� 1ð Þ N � 1ð Þð Þ ¼ F 4;40ð Þ ¼ 2:0909 at a ¼ 0:1, so we know that
the five algorithms are significantly different under two classifiers. Since the average classification accuracy of the 5-fold
cross validation is used for ranking, we use the Friedman statistic to further test whether there are significant differences
among the 5-fold cross validation. The classification accuracies and ranks of OD&KNN under KNN are shown in Table 11.
From Table 11, we obtain that F ¼ 0:5080 < F 4;40ð Þ of OD&KNN under KNN, i.e., there are no significant differences between
the 5-fold cross validation. In the same way, we obtain that there are no significant differences between the 5-fold cross val-
idation of each reduction algorithm under KNN and SVM. The average performance of each reduction algorithm can be
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Table 10
Ranks of reduction algorithms under KNN and SVM.

Datasets KNN SVM

NNRS NRS FarVPKNN AG OD&KNN NNRS NRS FarVPKNN AG OD&KNN

Seeds 5 3 3 3 1 2.5 4.5 2.5 4.5 1
Wine 3 2 5 4 1 4 2 5 3 1

Australian 3 3 5 3 1 4 4 2 4 1
Pop_failures 2 4 5 3 1 2 3 4 5 1
Segment 3 4.5 2 4.5 1 1 2.5 5 2.5 4
Wdbc 4 2 5 3 1 4 3 5 1 2
Wpbc 4 2 1 5 3 5 4 2 3 1
Sonar 1 3 4 5 2 2 3 4 5 1

Leukemia-ALLAML 2 3 4 5 1 4 2 3 5 1
DLBCL-Harvard 3 2 4 5 1 4 2 3 5 1

Lung-Cancer-Harvard2 3 2 5 4 1 3 1 5 4 2
Average 3 2.7727 3.9091 4.0455 1.2727 3.2273 2.8182 3.6818 3.8182 1.4545

Table 11
Classification accuracies and ranks of OD&KNN under KNN.

Datasets 1st time 2nd time 3rd time 4th time 5th time

Seeds 92.86(4) 95.24(2.5) 95.24(2.5) 90.48(5) 97.62(1)
Wine 94.29(5) 97.22(3) 94.44(4) 100(1.5) 100(1.5)

Australian 86.96(1.5) 84.78(5) 86.96(1.5) 86.23(3.5) 86.23(3.5)
Pop_failures 93.52(5) 95.37(4) 96.3(2.5) 97.22(1) 96.3(2.5)
Segment 96.75(1) 96.54(2.5) 95.67(5) 95.89(4) 96.54(2.5)
Wdbc 98.25(1) 97.37(2.5) 96.49(4) 96.46(5) 97.37(2.5)
Wpbc 75(2.5) 75(2.5) 66.67(5) 82.5(1) 71.79(4)
Sonar 82.93(2) 88.1(1) 71.43(5) 80.49(4) 80.95(3)

Leukemia-ALLAML 100(2) 93.33(4.5) 93.33(4.5) 100(2) 100(2)
DLBCL-Harvard 93.33(3.5) 87.5(5) 100(1.5) 100(1.5) 93.33(3.5)

Lung-Cancer-Harvard2 100(2.5) 100(2.5) 100(2.5) 97.22(5) 100(2.5)
Average 92.17(2.7273) 91.86(3.1818) 90.59(3.4545) 93.31(3.0455) 92.74(2.5909)
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regarded as the final performance of the algorithm. So it is reasonable to rank the performance of the five reduction algo-
rithms by using the average classification accuracy of the 5-fold cross validation.

Next, we test the statistical differences between the five reduction algorithms by using Bonferroni-Dunn test [9]. When

k ¼ 5;N ¼ 11;a ¼ 0:1 and q0:1 ¼ 2:241, we obtain the critical distance CDa ¼ qa
ffiffiffiffiffiffiffiffiffiffi
k kþ1ð Þ
6N

q
¼ 1:5109. For any two algorithms, if

their distance of average ranks exceeds CDa, then the performance of the two algorithms is significantly different. We use
the Bonferroni-Dunn test graph [9] to display intuitively the statistical differences among four algorithms. In Fig. 15, we
draw the critical difference (CD ¼ 1:5109) by using red line segment, then connect the reduction algorithms whose distances
of average ranks are less than 1:5109 at a ¼ 0:1. From Fig. 15, for NNRS, NRS, FarVPKNN and AG under KNN and SVM, we did
not test significant differences by using Bonferroni-Dunn test. The performance of OD&KNN is significantly different from
that of NNRS, FarVPKNN and AG under KNN and SVM. We do not know whether there are significant differences between
NRS and OD&KNN under KNN and SVM.

From [2], we know that the outcome of the comparison between any two reduction algorithms depends also on the per-
formance of the other algorithms by using the post hoc test based on mean-ranks. Therefore, we use the Wilcoxon signed-
rank test [40] to pairwise compare the differences of OD&KNN with respect to NNRS, NRS, FarVPKNN and AG. The informa-
tion of the Wilcoxon signed-rank test between OD&KNN and four other algorithms under KNN and SVM are shown in Tables
12,13, respectively. In the following, we describe in details the comparison between NNRS and OD&KNN under KNN. From
Table 12 (NNRS vs. OD&KNN), we obtain that the sum of ranks with positive signWþ ¼ 3 and the sum of ranks with negative
sign W� ¼ 7þ 6þ 9þ 10þ 1þ 8þ 5þ 4þ 11þ 2 ¼ 63. From [40], we obtain that the critical value of the Wilcoxon signed-
rank test Wn;a ¼ 11 at n ¼ 11 and a ¼ 0:05. The test statisticW ¼ min Wþ;W�f g ¼ 3 < Wn;a, and the average rank of NNRS is
greater than that of OD&KNN under KNN. That is, the performance of OD&KNN is significantly better than that of NNRS under
KNN. In the same way, we get that the performance of OD&KNN is significantly better than that of NNRS, NRS, FarVPKNN and
AG under both KNN and SVM.

By analyzing the classification accuracy and the number of selected attributes simultaneously, we find that FarVPKNN
selects the least number of attributes, but its classification accuracy is lower than that of raw data in most cases. Moreover,
among the five reduction algorithms, its classification performance is the worst. This shows that FarVPKNN may lose some
necessary attributes for classification tasks in the reduction process. NNRS and NRS select a relatively large number of attri-
butes when compared with OD&KNN. The classification performances of NNRS and NRS are comparable, and their classifi-
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Table 12
Wilcoxon signed-rank test between OD&KNN and four other algorithms under KNN.

Datasets NNRS vs. OD&KNN NRS vs. OD&KNN

NNRS OD&KNN sign abs1 rank NRS OD&KNN sign abs1 rank
Seeds 91.43 94.29 � 2.86 7 91.90 94.29 � 2.39 6
Wine 94.95 97.19 � 2.24 6 96.08 97.19 � 1.11 5

Australian 83.04 86.23 � 3.19 9 83.04 86.23 � 3.19 9
Pop_failures 92.04 95.74 � 3.70 10 90.93 95.74 � 4.81 10
Segment 95.89 96.28 � 0.39 1 95.84 96.28 � 0.44 2
Wdbc 94.2 97.19 � 2.99 8 96.13 97.19 � 1.06 4
Wpbc 72.23 74.19 � 1.96 5 74.22 74.19 + 0.03 1
Sonar 82.23 80.78 + 1.45 3 77.89 80.78 � 2.89 8

Leukemia-ALLAML 95.81 97.33 � 1.52 4 91.43 97.33 � 5.90 11
DLBCL-Harvard 88.42 94.83 � 6.41 11 92.25 94.83 � 2.58 7

Lung-Cancer-Harvard2 98.35 99.44 � 1.09 2 98.89 99.44 � 0.55 3

Datasets FarVPKNN vs. OD&KNN AG vs. OD&KNN
FarVPKNN OD&KNN sign abs1 rank AG OD&KNN sign abs1 rank

Seeds 91.9 94.29 � 2.39 3 91.9 94.29 � 2.39 3
Wine 91.62 97.19 � 5.57 6 94.37 97.19 � 2.82 4

Australian 61.45 86.23 � 24.78 10 83.04 86.23 � 3.19 5
Pop_failures 88.52 95.74 � 7.22 7 91.48 95.74 � 4.26 7
Segment 95.93 96.28 � 0.35 1 95.84 96.28 � 0.44 1
Wdbc 92.09 97.19 � 5.10 5 95.78 97.19 � 1.41 2
Wpbc 74.79 74.19 + 0.60 2 70.19 74.19 � 4.00 6
Sonar 76.93 80.78 � 3.85 4 75.45 80.78 � 5.33 8

Leukemia-ALLAML 86.19 97.33 � 11.14 9 80.67 97.33 � 16.66 11
DLBCL-Harvard 87 94.83 � 7.83 8 80.58 94.83 � 14.25 10

Lung-Cancer-Harvard2 74.01 99.44 � 25.43 11 91.68 99.44 � 7.76 9

[1] abs represents the absolute values of differences.

5 4 3 2 1
CD

OD&KNN

NRSNNRS
FarVPKNN

AG

(a) Comparison of all reduction algorithms under KNN

5 4 3 2 1
CD

OD&KNN

NRSNNRS
FarVPKNN

AG

(b) Comparison of all reduction algorithms under SVM
Fig. 15. Average ranks of four reduction algorithms, there are no significant differences between the algorithms that are connected at a ¼ 0:1.
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Table 13
Wilcoxon signed-rank test between OD&KNN and four other algorithms under SVM.

Datasets NNRS vs. OD&KNN NRS vs. OD&KNN

NNRS OD&KNN sign abs1 rank NRS OD&KNN sign abs1 rank

Seeds 92.86 95.24 � 2.38 6 92.38 95.24 � 2.86 9
Wine 94.37 98.32 � 3.95 8 97.19 98.32 � 1.13 5

Australian 84.35 85.94 � 1.59 5 84.35 85.94 � 1.59 7
Pop_failures 94.44 95.37 � 0.93 3 92.41 95.37 � 2.96 10
Segment 95.93 95.41 + 0.52 1 95.8 95.41 + 0.39 2
Wdbc 96.66 97.19 � 0.53 2 96.66 97.19 � 0.53 3
Wpbc 74.22 78.22 � 4.00 9 76.72 78.22 � 1.50 6
Sonar 76.41 79.79 � 3.38 7 73.09 79.79 � 6.70 11

Leukemia-ALLAML 88.86 93.14 � 4.28 10 92.95 93.14 � 0.19 1
DLBCL-Harvard 76.67 93.67 � 17.00 11 91 93.67 � 2.67 8

Lung-Cancer-Harvard2 96.68 97.81 � 1.13 4 98.89 97.81 + 1.08 4

Datasets FarVPKNN vs. OD&KNN AG vs. OD&KNN

FarVPKNN OD&KNN sign abs1 rank AG OD&KNN sign abs1 rank

Seeds 92.86 95.24 � 2.38 5 92.86 95.24 � 2.38 5
Wine 90.44 98.32 � 7.88 9 90.44 98.32 � 7.88 9

Australian 85.51 85.94 � 0.43 2 85.51 85.94 � 0.43 2
Pop_failures 91.48 95.37 � 3.89 6 91.48 95.37 � 3.89 6
Segment 94.07 95.41 � 1.34 4 94.07 95.41 � 1.34 4
Wdbc 95.96 97.19 � 1.23 3 95.96 97.19 � 1.23 3
Wpbc 77.83 78.22 � 0.39 1 77.83 78.22 � 0.39 1
Sonar 72.16 79.79 � 7.63 8 72.16 79.79 � 7.63 8

Leukemia-ALLAML 88.95 93.14 � 4.19 7 88.95 93.14 � 4.19 7
DLBCL-Harvard 83.33 93.67 � 10.34 10 83.33 93.67 � 10.34 10

Lung-Cancer-Harvard2 82.87 97.81 � 14.94 11 82.87 97.81 � 14.94 11

[1] abs represents the absolute values of differences.
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cation performances are slightly better than that of raw data. But the performances of NNRS and NRS are worse than that of
OD&KNN in most cases. This shows that the selected attributes by NNRS and NRS are still redundant. AG selects the largest
number of attributes, and its classification performance is worse than that of OD&KNN in most cases. That is to say, the
selected attributes by AG have more redundant attributes. From the perspective of the size and quality of the selected attri-
bute subset, we know that the proposed OD&KNN is more reasonable and superior to NNRS, NRS, FarVPKNN and AG.

From Tables 5–9, Fig. 15 and the corresponding analysis, we know that the proposed OD&KNN can achieve better classi-
fication performance by quickly capturing fewer attributes with high separability and strong approximation ability.
6. Conclusions

To improve the learning efficiency and the performance of classification tasks, we need to use attribute reduction to
remove redundant and inconsistent attributes from raw data.

In this work, we introduce overlap degree (OD) of attributes into k-nearest-neighbor rough sets to enhance the compu-
tational efficiency and classification performance of reduced data. First, OD of attributes is applied to sort the attributes. Then
we use k-nearest-neighbor rough sets to remove redundant attribute sequentially from the sorted attributes. There are two
advantages of the proposed OD&KNN when compared with existing reduction algorithms. One is that the efficiency of
OD&KNN is higher than that of other attribute reduction methods based on heuristic search by eliminating the repeated cal-
culation of selecting relatively important attributes in the process of looping search. Compared with several existing attri-
bute reduction algorithms, OD&KNN has higher computational efficiency in terms of the dimensionality of the data. This
computational advantage is useful, since attribute reduction is most useful in high-dimensional datasets. The other is that
the reduct obtained by OD&KNN not only keeps the dependency degree unchanged, but also selects the attributes with
low overlap degree. Finally, we use public datasets to verify efficiency and feasibility by comparing the performance of
OD&KNN with other reduction algorithms. The experimental results show that the performance of OD&KNN is better than
the others in computational efficiency and classification accuracy.
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